Maxiset, sélection de modèles et estimation d'images par bandelettes

E. Le Pennec / LPMA / Université Denis Diderot - Paris VII
 F. Autin, J.-M. Loubes, V. Rivoirard,
 S. Mallat, Ch. Dossal et G. Peyré

02 Octobre 2006

Estimation dans un modèle de bruit blanc gaussien :

Estimation dans un modèle de bruit blanc gaussien :

 $dY = f(t)dt + \epsilon dW \quad .$

 \blacksquare Estimation de f dans des bases : seuillage et sélection de modèles.

Estimation dans un modèle de bruit blanc gaussien :

 $dY = f(t)dt + \epsilon dW \quad .$

Estimation de *f* dans des bases : seuillage et sélection de modèles.
 Maxiset : espace adaptée à un estimateur.

Estimation dans un modèle de bruit blanc gaussien :

- Estimation de f dans des bases : seuillage et sélection de modèles.
 Maxiset : espace adaptée à un estimateur.
- Maxiset pour la sélection de modèle : espace d'approximation de la théorie de l'approximation.

Estimation dans un modèle de bruit blanc gaussien :

- Estimation de f dans des bases : seuillage et sélection de modèles.
 Maxiset : espace adaptée à un estimateur.
- Maxiset pour la sélection de modèle : espace d'approximation de la théorie de l'approximation.
- Nécessité d'avoir une représentation creuse (approximation).

Estimation dans un modèle de bruit blanc gaussien :

- Estimation de f dans des bases : seuillage et sélection de modèles.
 Maxiset : espace adaptée à un estimateur.
- Maxiset pour la sélection de modèle : espace d'approximation de la théorie de l'approximation.
- Mécessité d'avoir une représentation creuse (approximation).
- Images, représentations géométriques et estimation en bandelettes.

Estimation par projection.

- Estimation par projection.
- Estimation oracle et approximation.

- Estimation par projection.
- Estimation oracle et approximation.
- Estimateur par seuillage et estimateur par sélection de modèles.

- Estimation par projection.
- Estimation oracle et approximation.
- Estimateur par seuillage et estimateur par sélection de modèles.
- Maxiset et espace d'approximations.

- Estimation par projection.
- Estimation oracle et approximation.
- Estimateur par seuillage et estimateur par sélection de modèles.
- Maxiset et espace d'approximations.
- Importance du choix des modèles.

- Estimation par projection.
- Estimation oracle et approximation.
- Estimateur par seuillage et estimateur par sélection de modèles.
- Maxiset et espace d'approximations.
- Importance du choix des modèles.
- ID : Signaux , Fourier et ondelettes.

- Estimation par projection.
- Estimation oracle et approximation.
- Estimateur par seuillage et estimateur par sélection de modèles.
- Maxiset et espace d'approximations.
- Importance du choix des modèles.
- ID : Signaux , Fourier et ondelettes.
- D : Images , ondelettes et représentations géométriques.

- Estimation par projection.
- Estimation oracle et approximation.
- Estimateur par seuillage et estimateur par sélection de modèles.
- Maxiset et espace d'approximations.
- Importance du choix des modèles.
- ID : Signaux , Fourier et ondelettes.
- D : Images , ondelettes et représentations géométriques.
- Estimation d'images par bandelettes.

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW$$

•

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW$$

•

$$Y = f + \frac{1}{\sqrt{N}}W \quad .$$

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW$$

•

Dans la suite, projection sur un espace de dimension N et calibrage $\epsilon = \frac{1}{\sqrt{N}}$ (lien avec la régression) :

$$Y = f + \frac{1}{\sqrt{N}}W \quad .$$

Propriétés de f : propriétés dans le domaine continu.

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW$$

$$Y = f + \frac{1}{\sqrt{N}}W$$

- Propriétés de f : propriétés dans le domaine continu.
- Estimateur par projection : $F = P_{\widehat{m}}Y$ avec \widehat{m} s.e.v. (modèle) à choisir.

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW$$

$$Y = f + \frac{1}{\sqrt{N}}W$$

- Propriétés de f : propriétés dans le domaine continu.
- Estimateur par projection : $F = P_{\widehat{m}}Y$ avec \widehat{m} s.e.v. (modèle) à choisir.
- Substitution \mathcal{M} de modèles m.

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW$$

$$Y = f + \frac{1}{\sqrt{N}}W$$

- Propriétés de f : propriétés dans le domaine continu.
- Estimateur par projection : $F = P_{\widehat{m}}Y$ avec \widehat{m} s.e.v. (modèle) à choisir.
- \checkmark Choix de la collection $\mathcal M$ de modèles m .
- Choix du modèle \widehat{m} utilisé dans l'estimateur.

Modèle de bruit blanc :

$$dY = f(t)dt + \epsilon dW$$

$$Y = f + \frac{1}{\sqrt{N}}W$$

- Propriétés de f : propriétés dans le domaine continu.
- Estimateur par projection : $F = P_{\widehat{m}}Y$ avec \widehat{m} s.e.v. (modèle) à choisir.
- \checkmark Choix de la collection $\mathcal M$ de modèles m .
- Choix du modèle \widehat{m} utilisé dans l'estimateur.
- Critère : risque quadratique

$$E(\|f - F\|^2)$$

■ Base o.n. $\{b_n\}_n$ et $m = vect\{b_n\}_{n \in \Gamma}$

■ Base o.n.
$$\{b_n\}_n$$
 et $m = \text{vect}\{b_n\}_{n \in \Gamma}$

Décomposition de $Y = f + \frac{1}{\sqrt{N}}W$ dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \frac{1}{\sqrt{N}} \langle W, b_n \rangle \right) b_n$$

• Base o.n. $\{b_n\}_n$ et $m = \operatorname{vect}\{b_n\}_{n \in \Gamma}$

Décomposition de $Y = f + \frac{1}{\sqrt{N}}W$ dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \frac{1}{\sqrt{N}} \langle W, b_n \rangle \right) b_n \quad .$$

Estimateur F par projection (conservation/élimination de coordonnées) :

$$F = P_m Y = Y_\Gamma = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Solution Base o.n.
$$\{b_n\}_n$$
 et $m = \operatorname{vect}\{b_n\}_{n \in \Gamma}$

Décomposition de $Y = f + \frac{1}{\sqrt{N}}W$ dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \frac{1}{\sqrt{N}} \langle W, b_n \rangle \right) b_n \quad .$$

Estimateur F par projection (conservation/élimination de coordonnées) :

$$F = P_m Y = Y_\Gamma = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Minimisation du risque quadratique :

$$E(\|f - F\|^2) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \frac{1}{N}$$

• Base o.n. $\{b_n\}_n$ et $m = \operatorname{vect}\{b_n\}_{n \in \Gamma}$

Décomposition de $Y = f + \frac{1}{\sqrt{N}}W$ dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \frac{1}{\sqrt{N}} \langle W, b_n \rangle \right) b_n \quad .$$

Estimateur F par projection (conservation/élimination de coordonnées) :

$$F = P_m Y = Y_\Gamma = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Minimisation du risque quadratique :

$$E(\|f - F\|^2) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \frac{1}{N}$$

Solution : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.

■ Base o.n.
$$\{b_n\}_n$$
 et $m = \text{vect}\{b_n\}_{n \in \Gamma}$

Décomposition de $Y = f + \frac{1}{\sqrt{N}}W$ dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \frac{1}{\sqrt{N}} \langle W, b_n \rangle \right) b_n \quad .$$

Estimateur F par projection (conservation/élimination de coordonnées) :

$$F = P_m Y = Y_\Gamma = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Minimisation du risque quadratique :

$$E(\|f - F\|^2) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \frac{1}{N}$$

Solution : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.

Problème : demande la connaissance de f ! (Oracle)

P Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \frac{1}{N}$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \quad .$$

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \frac{1}{N}$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \frac{1}{N}$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.
 Théorie de l'approximation :

$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_0}\|^2 + \frac{1}{N}|\Gamma_O| \le C\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$$

$$\Leftrightarrow \min_{\dim(m) \le M} \|f - P_m f\|^2 \le CM^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta}$$
Oracle, risque et approximation

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \frac{1}{N}$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.
Théorie de l'approximation :

$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_0}\|^2 + \frac{1}{N}|\Gamma_O| \le C\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$$

$$\Leftrightarrow \min_{\dim(m) \le M} \|f - P_m f\|^2 \le CM^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta}$$

Minimax : pour Θ, classe de fonctions, recherche d'une base telle que Θ ⊂ \mathcal{A}^{β} avec β optimal ($(\frac{1}{N})^{\frac{\beta}{\beta+1}}$ vitesse minimax).

Oracle, risque et approximation

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \frac{1}{N}$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \frac{1}{N}|\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.
Théorie de l'approximation :

$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_0}\|^2 + \frac{1}{N}|\Gamma_O| \le C\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}}$$

$$\Leftrightarrow \min_{\dim(m) \le M} \|f - P_m f\|^2 \le CM^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta}$$

- Minimax : pour Θ , classe de fonctions, recherche d'une base telle que $\Theta \subset \mathcal{A}^{\beta}$ avec β optimal ($(\frac{1}{N})^{\frac{\beta}{\beta+1}}$ vitesse minimax).
- Maxiset : pour une base fixée, ensemble des fonctions estimées avec une vitesse $\left(\frac{1}{N}\right)^{\frac{\beta}{\beta+1}} = \mathcal{A}^{\beta}$.

• Oracle : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.

- Oracle : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.
- Stratégie : garder les grands coefficients.

- Oracle : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.
- Stratégie : garder les grands coefficients.
- Seuillage : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge T\left(\frac{1}{\sqrt{N}}\right)\}$ et $F_S = Y_{\Gamma_S}$.

- Oracle : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.
- Stratégie : garder les grands coefficients.
- Théorème (Donoho, Johnstone) : Si $T\left(\frac{1}{\sqrt{N}}\right) = \lambda \sqrt{\frac{\log N}{N}}$, alors

$$E(\|f - F_S\|^2) \le C(\log N)E(\|f - F_O\|^2)$$
$$E(\|f - F_S\|^2) \le C\min_{\Gamma} \|f - f_{\Gamma}\|^2 + \lambda^2 \frac{\log N}{N} |\Gamma| \quad \text{plus fin.}$$

- Oracle : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \frac{1}{\sqrt{N}}\}$ et $F_O = Y_{\Gamma_0}$.
- Stratégie : garder les grands coefficients.
- Théorème (Donoho, Johnstone) : Si $T\left(\frac{1}{\sqrt{N}}\right) = \lambda \sqrt{\frac{\log N}{N}}$, alors

$$E(\|f - F_S\|^2) \le C(\log N)E(\|f - F_O\|^2)$$
$$E(\|f - F_S\|^2) \le C\min_{\Gamma} \|f - f_{\Gamma}\|^2 + \lambda^2 \frac{\log N}{N} |\Gamma| \quad \text{plus fin.}$$

Théorème (Maxiset) (Cohen, DeVore, Kerkyacharian, Picard) :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\beta}{\beta+1}} \Leftrightarrow f \in V_{\frac{2\beta}{\beta+1}}^*$$

$$\Leftrightarrow \min_{\Gamma} \|f - f_{\Gamma}\|^2 + \lambda^2 T^2 |\Gamma| \le C T^{2\frac{\beta}{\beta+1}}$$

$$\Leftrightarrow \min_{\dim(m) \le M} \|f - P_m f\|^2 \le C M^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta} \quad .$$

• Risque oracle : $||f - f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N}|\Gamma|$.

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N}|\Gamma|$.
- Minimisation : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$ (seuillage) et $F_S = Y_{\Gamma_S}$.

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N} |\Gamma|$.
- Minimisation : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$ (seuillage) et $F_S = Y_{\Gamma_S}$.
- Cadre de la sélection de modèles avec $pen(m) = \frac{\lambda_N}{N} \dim(m)$:

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m) \quad .$$

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N} |\Gamma|$.
- Minimisation : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$ (seuillage) et $F_S = Y_{\Gamma_S}$.
- Cadre de la sélection de modèles avec $pen(m) = \frac{\lambda_N}{N} \dim(m)$:

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m) \quad .$$

• L'ensemble \mathcal{M}_N des modèles m parcourent l'ensemble des sous-espaces engendrés par les N vecteurs de bases.

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N} |\Gamma|$.
- Minimisation : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$ (seuillage) et $F_S = Y_{\Gamma_S}$.
- Cadre de la sélection de modèles avec $pen(m) = \frac{\lambda_N}{N} \dim(m)$:

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m) \quad .$$

- L'ensemble \mathcal{M}_N des modèles m parcourent l'ensemble des sous-espaces engendrés par les N vecteurs de bases.
- Inégalité de Kraft satisfaite pour $\lambda_N = \lambda \sqrt{\log N}$:

$$\sum_{m \in \mathcal{M}_N} e^{-\lambda_N \dim(m)} < +\infty$$

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N} |\Gamma|$.
- Minimisation : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$ (seuillage) et $F_S = Y_{\Gamma_S}$.
- Cadre de la sélection de modèles avec $pen(m) = \frac{\lambda_N}{N} \dim(m)$:

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m) \quad .$$

- L'ensemble \mathcal{M}_N des modèles m parcourent l'ensemble des sous-espaces engendrés par les N vecteurs de bases.
- Inégalité de Kraft satisfaite pour $\lambda_N = \lambda \sqrt{\log N}$:

$$\sum_{m \in \mathcal{M}_N} e^{-\lambda_N \dim(m)} < +\infty$$

• Théorème (*Barron, Birgé, Massart*) : Pour λ assez grand,

$$E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda^2 \frac{\log N}{N} \dim(m)$$

- Risque oracle : $||f f_{\Gamma_O}||^2 + \frac{1}{N}|\Gamma_O|$.
- Analogue empirique : $||Y Y_{\Gamma}||^2 + \frac{\lambda_N}{N} |\Gamma|$.
- Minimisation : $\Gamma_S = \{n, |\langle Y, b_n \rangle| \ge \sqrt{\frac{\lambda_N}{N}}\}$ (seuillage) et $F_S = Y_{\Gamma_S}$.
- Cadre de la sélection de modèles avec $pen(m) = \frac{\lambda_N}{N} \dim(m)$:

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m) \quad .$$

- L'ensemble \mathcal{M}_N des modèles m parcourent l'ensemble des sous-espaces engendrés par les N vecteurs de bases.
- Inégalité de Kraft satisfaite pour $\lambda_N = \lambda \sqrt{\log N}$:

$$\sum_{m \in \mathcal{M}_N} e^{-\lambda_N \dim(m)} < +\infty$$

• Théorème (*Barron, Birgé, Massart*) : Pour λ assez grand,

$$E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda^2 \frac{\log N}{N} \dim(m)$$

Cadre permettant de travailler dans plusieurs bases à la fois...

Sélection de modèles

Sélection de modèles

Théorème (Barron, Birgé, Massart): Si la collection \mathcal{M}_N de modèles m satisfait une inégalité de Kraft pour des coefficients $\lambda_{N,m}$ $\left(\sum_{m \in \mathcal{M}_N} e^{-\lambda_{N,m} \dim(m)} < +\infty\right)$ alors pour $pen(m) = (C_1 + C_2 \lambda_{N,m}) \frac{\dim(m)}{N}$

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m)$$

satisfait

$$E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + (C_1 + C_2 \lambda_{N,m}) \frac{\dim(m)}{N}$$

Sélection de modèles

Théorème (Barron, Birgé, Massart): Si la collection \mathcal{M}_N de modèles m satisfait une inégalité de Kraft pour des coefficients $\lambda_{N,m}$ $\left(\sum_{m \in \mathcal{M}_N} e^{-\lambda_{N,m} \dim(m)} < +\infty\right)$ alors pour $pen(m) = (C_1 + C_2 \lambda_{N,m}) \frac{\dim(m)}{N}$

$$F_S = \underset{P_mY, m \in \mathcal{M}_N}{\operatorname{argmin}} \|Y - P_mY\|^2 + \operatorname{pen}(m)$$

satisfait

$$E(\|f - F_S\|^2) \le C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + (C_1 + C_2 \lambda_{N,m}) \frac{\dim(m)}{N}$$

Théorème (Maxiset) : Si $\mathcal{M}_N \subset \mathcal{M}_{N+1}$, $\lambda_{N,m} = \lambda_N$ et $1 \leq \frac{\lambda N}{\lambda_{N/2}} \leq (2 - 2\epsilon)$ alors $E(\|f - F_S\|^2) \leq C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$

$$\Leftrightarrow \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + (C_1 + C_2 \lambda_N) \frac{\dim(m)}{N} \leq C \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + T^2 \dim(m) \leq C \left(T^2\right)^{\frac{\beta}{\beta+1}}$$
$$\Leftrightarrow \min_{\dim(m) \leq M} \|f - P_m f\|^2 \leq C M^{-\beta} \Leftrightarrow f \in \mathcal{A}^{\beta} \quad .$$

• $f \in \mathcal{A}^{\beta} \implies E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$: sélection de modèles.

• $f \in \mathcal{A}^{\beta} \implies E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$: sélection de modèles. • Sens inverse :

$$E(\|f - F_S\|^2) \ge C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{N}$$
 ???

• $f \in \mathcal{A}^{\beta} \implies E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$: sélection de modèles. • Sens inverse :

$$E(\|f - F_S\|^2) \ge C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{N}$$
 ???

Cas du seuillage :

• $f \in \mathcal{A}^{\beta} \implies E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$: sélection de modèles. • Sens inverse :

$$E(\|f - F_S\|^2) \ge C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{N}$$
 ???

- Cas du seuillage :
 - On montre

$$||f - F_S||^2 \ge ||f - f_{T/2}||^2$$
.

• $f \in \mathcal{A}^{\beta} \implies E(\|f - F_S\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$: sélection de modèles. • Sens inverse :

$$E(\|f - F_S\|^2) \ge C \min_{m \in \mathcal{M}_N} \|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{N}$$
 ???

- Cas du seuillage :
 - On montre

$$||f - F_S||^2 \ge ||f - f_{T/2}||^2$$
.

Ensuite on obtient

$$\|f - f_{T/2}\|^2 \le CT^{\frac{2\alpha}{\alpha+1}} \Rightarrow \|f - f_{T/2}\|^2 + T^2M \le C_{\alpha}T^{\frac{2\alpha}{\alpha+1}}$$

9 \widehat{m} : modèle sélectionné qui minimise

$$\|Y - P_m Y\|^2 + \lambda_N \frac{\dim(m)}{N}$$

•

9 \hat{m} : modèle sélectionné qui minimise

$$|Y - P_m Y||^2 + \lambda_N \frac{\dim(m)}{N}$$

٠

 \square m_O : modèle oracle qui minimise pour K suffisament grand

$$\|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{KN}$$

 ${\it I}$ \widehat{m} : modèle sélectionné qui minimise

$$\|Y - P_m Y\|^2 + \lambda_N \frac{\dim(m)}{N}$$

٠

 \blacksquare m_O : modèle oracle qui minimise pour K suffisament grand

$$\|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{KN}$$

En général, on a pas

$$||f - P_{\widehat{m}}Y||^2 \ge ||f - P_{m_O}f||^2$$
.

 ${\it I}$ \widehat{m} : modèle sélectionné qui minimise

$$\|Y - P_m Y\|^2 + \lambda_N \frac{\dim(m)}{N}$$

٠

 \blacksquare m_O : modèle oracle qui minimise pour K suffisament grand

$$\|f - P_m f\|^2 + \lambda_N \frac{\dim(m)}{KN}$$

$$||f - P_{\widehat{m}}Y||^2 \ge ||f - P_{m_O}f||^2$$
.

On va montrer que

$$E(\|f - P_{\widehat{m}}Y\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}} \implies \|f - P_{m_O}f\|^2 + \lambda_N \frac{\dim(m_O)}{KN} \le C\left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

Par définition :

$$\|Y - P_{\widehat{m}}Y\|^2 + \lambda_N \frac{\dim \widehat{m}}{N} \le \|Y - P_{m_O}Y\|^2 + \lambda_N \frac{\dim m_O}{N}$$

Par définition :

$$\|Y - P_{\widehat{m}}Y\|^2 + \lambda_N \frac{\dim \widehat{m}}{N} \le \|Y - P_{m_O}Y\|^2 + \lambda_N \frac{\dim m_O}{N}$$

En passant à l'espérance, on obtient

$$E(\lambda_N \frac{\dim \widehat{m}}{N}) \le \|f - P_{m_O} f\|^2 + \frac{\dim m_O}{N} + \lambda_N \frac{\dim m_O}{N}$$

Par définition :

$$\|Y - P_{\widehat{m}}Y\|^2 + \lambda_N \frac{\dim \widehat{m}}{N} \le \|Y - P_{m_O}Y\|^2 + \lambda_N \frac{\dim m_O}{N}$$

En passant à l'espérance, on obtient

$$E(\lambda_N \frac{\dim \widehat{m}}{N}) \le \|f - P_{m_O}f\|^2 + \frac{\dim m_O}{N} + \lambda_N \frac{\dim m_O}{N}$$

Par ailleurs,

$$\|f - P_{\widehat{m}}f\|^2 + \lambda_N \frac{\dim \widehat{m}}{KN} \ge \|f - P_{m_O}f\|^2 + \lambda_N \frac{\dim m_O}{KN}$$

Par définition :

$$\|Y - P_{\widehat{m}}Y\|^2 + \lambda_N \frac{\dim \widehat{m}}{N} \le \|Y - P_{m_O}Y\|^2 + \lambda_N \frac{\dim m_O}{N}$$

En passant à l'espérance, on obtient

$$E(\lambda_N \frac{\dim \widehat{m}}{N}) \le \|f - P_{m_O}f\|^2 + \frac{\dim m_O}{N} + \lambda_N \frac{\dim m_O}{N}$$

Par ailleurs,

$$\|f - P_{\widehat{m}}f\|^2 + \lambda_N \frac{\dim \widehat{m}}{KN} \ge \|f - P_{m_O}f\|^2 + \lambda_N \frac{\dim m_O}{KN}$$

En passant à l'espérance, on en déduit

$$E(\|f - P_{\widehat{m}}f\|^2) \ge \frac{K - 1}{K} \left(\|f - P_{m_O}f\|^2 - \frac{\dim(m_O)}{(K - 1)N}\right)$$

On introduit alors la dépendance en N pour montrer par récurrence que si

$$E(\|f - P_{\widehat{m}}Y\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{p}{\beta+1}}$$

alors, sous une hypothèse de croissance pour λ_N et de structure des modèles, pour K et C_2 assez grand

$$\frac{\dim(m_O(N))}{KN} \le C_2 \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

On introduit alors la dépendance en N pour montrer par récurrence que si

$$E(\|f - P_{\widehat{m}}Y\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{p}{\beta+1}}$$

alors, sous une hypothèse de croissance pour λ_N et de structure des modèles, pour K et C_2 assez grand

$$\frac{\dim(m_O(N))}{KN} \le C_2 \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

Ceci implique

$$\|f - P_{m_O(N)}f\|^2 \le \left(\frac{K}{K-1}C + C_2\right) \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$
Esquisse de preuve - 4

On introduit alors la dépendance en N pour montrer par récurrence que si

$$E(\|f - P_{\widehat{m}}Y\|^2) \le C\left(\frac{\lambda_N}{N}\right)^{\frac{p}{\beta+1}}$$

alors, sous une hypothèse de croissance pour λ_N et de structure des modèles, pour K et C_2 assez grand

$$\frac{\dim(m_O(N))}{KN} \le C_2 \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

Ceci implique

$$\|f - P_{m_O(N)}f\|^2 \le \left(\frac{K}{K-1}C + C_2\right) \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

• Enfin sous l'hypothèse, $\lambda_N \leq 2(1-\epsilon)\lambda_{N/2}$, on démontre

$$\|f - P_{m_O}f\|^2 + \lambda_N \frac{\dim(m_O)}{KN} \le \left(\frac{K}{K-1}C + C_2 + C_3\right) \left(\frac{\lambda_N}{N}\right)^{\frac{\beta}{\beta+1}}$$

- Trois critères :
 - Espace d'approximation \mathcal{A}^{β} grand,
 - Collection pas trop grande (λ_N au plus logarithmique),
 - Algorithmique pour la minimisation.

- Trois critères :
 - Espace d'approximation $\mathcal{A}^{\boldsymbol{\beta}}$ grand,
 - Collection pas trop grande (λ_N au plus logarithmique),
 - Algorithmique pour la minimisation.
- M non linéaire : m sous-espaces engendrées par des vecteurs d'une base o.n.

Espaces d'approximation non linéaire, $\lambda_N \simeq \log N$ et seuillage.

- Trois critères :
 - Espace d'approximation $\mathcal{A}^{\boldsymbol{\beta}}$ grand,
 - Collection pas trop grande (λ_N au plus logarithmique),
 - Algorithmique pour la minimisation.
- M non linéaire : m sous-espaces engendrées par des vecteurs d'une base o.n.

Espaces d'approximation non linéaire, $\lambda_N \simeq \log N$ et seuillage.

M linéaire : m sous-espaces croissants engendrées par des vecteurs d'une base o.n. dans l'ordre.

Espaces d'approximation linéaire, $\lambda_N \simeq C$ et seuillage.

- Trois critères :
 - Espace d'approximation $\mathcal{A}^{\boldsymbol{\beta}}$ grand,
 - Collection pas trop grande (λ_N au plus logarithmique),
 - Algorithmique pour la minimisation.
- M non linéaire : m sous-espaces engendrées par des vecteurs d'une base o.n.

Espaces d'approximation non linéaire, $\lambda_N \simeq \log N$ et seuillage.

M linéaire : m sous-espaces croissants engendrées par des vecteurs d'une base o.n. dans l'ordre.

Espaces d'approximation linéaire, $\lambda_N \simeq C$ et seuillage.

M hautement non linéaire : m sous-espaces engendrés par des vecteurs d'une base choisie parmi un dictionnaire de bases.

Espaces d'approximations hautement non linéaires...

 $\lambda_N \simeq C \log N$ si nb total de vecteurs de base = $\mathcal{O}(N^C)$.

Seuillage et algorithme de recherche de meilleure base si structure...

- Trois critères :
 - Espace d'approximation \mathcal{A}^{β} grand,
 - Collection pas trop grande (λ_N au plus logarithmique),
 - Algorithmique pour la minimisation.
- M non linéaire : m sous-espaces engendrées par des vecteurs d'une base o.n.

Espaces d'approximation non linéaire, $\lambda_N \simeq \log N$ et seuillage.

M linéaire : m sous-espaces croissants engendrées par des vecteurs d'une base o.n. dans l'ordre.

Espaces d'approximation linéaire, $\lambda_N \simeq C$ et seuillage.

M hautement non linéaire : m sous-espaces engendrés par des vecteurs d'une base choisie parmi un dictionnaire de bases.

Espaces d'approximations hautement non linéaires...

 $\lambda_N \simeq C \log N$ si nb total de vecteurs de base = $\mathcal{O}(N^C)$.

Seuillage et algorithme de recherche de meilleure base si structure...

• Exemples autour des fonctions \mathbf{C}^{α} .

• Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.

- Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.
- Seuillage dans la base de Fourier :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

•

- Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.
- Seuillage dans la base de Fourier :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

Disparition du facteur $\log N$ en sélectionnant les M premiers coefficients au lieu des M plus grands (approximation linéaire).

- Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.
- Seuillage dans la base de Fourier :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- Disparition du facteur $\log N$ en sélectionnant les M premiers coefficients au lieu des M plus grands (approximation linéaire).
- Maxiset redonne le résultat : $\mathbf{C}^{\alpha} \subset H^{\alpha} \subset \mathcal{A}^{2\alpha}(\text{Lin}) \subset \mathcal{A}^{2\alpha}(\text{NonLin})$ puisque $\mathcal{A}^{2\alpha}(\text{Lin})$ est une version faible de H^{α} .

• Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- Disparition du facteur $\log N$ en sélectionnant les M premiers coefficients au lieu des M plus grands (approximation linéaire).
- Maxiset redonne le résultat : $\mathbf{C}^{\alpha} \subset H^{\alpha} \subset \mathcal{A}^{2\alpha}(\operatorname{Lin}) \subset \mathcal{A}^{2\alpha}(\operatorname{NonLin})$ puisque $\mathcal{A}^{2\alpha}(\operatorname{Lin})$ est une version faible de H^{α} .
- Pour les fonctions \mathbf{C}^{α} par morceaux : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.

• Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- Disparition du facteur $\log N$ en sélectionnant les M premiers coefficients au lieu des M plus grands (approximation linéaire).
- Maxiset redonne le résultat : $\mathbf{C}^{\alpha} \subset H^{\alpha} \subset \mathcal{A}^{2\alpha}(\operatorname{Lin}) \subset \mathcal{A}^{2\alpha}(\operatorname{NonLin})$ puisque $\mathcal{A}^{2\alpha}(\operatorname{Lin})$ est une version faible de H^{α} .
- Pour les fonctions \mathbf{C}^{α} par morceaux : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.
- ▶ Pour $\alpha > 1$, \mathbf{C}^{α} par morceaux $\not\subset \mathcal{A}^{2\alpha}(\text{NonLin})$.

• Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- Disparition du facteur $\log N$ en sélectionnant les M premiers coefficients au lieu des M plus grands (approximation linéaire).
- Maxiset redonne le résultat : $\mathbf{C}^{\alpha} \subset H^{\alpha} \subset \mathcal{A}^{2\alpha}(\operatorname{Lin}) \subset \mathcal{A}^{2\alpha}(\operatorname{NonLin})$ puisque $\mathcal{A}^{2\alpha}(\operatorname{Lin})$ est une version faible de H^{α} .
- Pour les fonctions \mathbf{C}^{α} par morceaux : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.
- ▶ Pour $\alpha > 1$, \mathbf{C}^{α} par morceaux $\not\subset \mathcal{A}^{2\alpha}(\text{NonLin})$.
- On a uniquement \mathbf{C}^{lpha} par morceaux $\subset \mathcal{A}^2(\mathrm{Lin})$!

• Fonctions \mathbf{C}^{α} : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- Disparition du facteur $\log N$ en sélectionnant les M premiers coefficients au lieu des M plus grands (approximation linéaire).
- Maxiset redonne le résultat : $\mathbf{C}^{\alpha} \subset H^{\alpha} \subset \mathcal{A}^{2\alpha}(\operatorname{Lin}) \subset \mathcal{A}^{2\alpha}(\operatorname{NonLin})$ puisque $\mathcal{A}^{2\alpha}(\operatorname{Lin})$ est une version faible de H^{α} .
- Pour les fonctions \mathbf{C}^{α} par morceaux : vitesse minimax $(\frac{1}{N})^{\frac{2\alpha}{2\alpha+1}}$ $(\beta = 2\alpha)$.
- Pour $\alpha > 1$, \mathbf{C}^{α} par morceaux $\not\subset \mathcal{A}^{2\alpha}(\text{NonLin})$.
- On a uniquement \mathbf{C}^{lpha} par morceaux $\subset \mathcal{A}^2(\mathrm{Lin})$!
- Besoin d'autres bases…

Base d'ondelettes 1D de $L^2[0,1]$

Base d'ondelettes 1D de $L^2[0,1]$

Construite à partir d'une fonction d'échelle $\phi(x)$ et d'une ondelette mère $\psi(x)$

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \phi\left(\frac{x - 2^{j}n}{2^{j}}\right) \quad , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{x - 2^{j}n}{2^{j}}\right)$$

Base d'ondelettes 1D de $L^2[0,1]$

Construite à partir d'une fonction d'échelle $\phi(x)$ et d'une ondelette mère $\psi(x)$

 $\phi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \phi\left(\frac{x - 2^{j}n}{2^{j}}\right) \quad , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{x - 2^{j}n}{2^{j}}\right) \quad .$

• $\mathbf{B} = \left\{ \psi_{j,n} \right\}_{j \in \mathbb{N}, 2^{j} n \in [0,1)}$ est une base orthonormale de $L^{2}[0,1]$.

Maxisets bien étudiés dans ce cadre (*C*, *DV*, *K*, *P*, *Autin*, *Rivoirard*).

Maxisets bien étudiés dans ce cadre (C, DV, K, P, Autin, Rivoirard).
 A^β(Lin) = B^{β/2}_{2,∞}.

- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B_{2/(\beta+1),2/(\beta+1)}^{\beta/2}$ avec $\mathcal{W}B_{p,q}^{s}$ version faible de $B_{p,q}^{s}$.

- Maxisets bien étudiés dans ce cadre (*C*, *DV*, *K*, *P*, *Autin*, *Rivoirard*).
 \$\mathcal{A}^{\mathcal{B}}(Lin) = B_{2,\infty}^{\beta/2}\$.\$\$\$\$\$\$\$\$\$\$\$
- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta/2}_{2/(\beta+1),2/(\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.
- $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{2\alpha}(\text{Lin}) = B_{2,\infty}^{\alpha} \subsetneq \mathbf{C}^{\alpha}$ par morceaux $\subsetneq \mathcal{A}^{2\alpha}(\text{NonLin}) = \mathcal{W}B_{p,p}^{\alpha}$ avec $p = 2/(2\alpha + 1)$.

- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B_{2/(\beta+1),2/(\beta+1)}^{\beta/2}$ avec $\mathcal{W}B_{p,q}^{s}$ version faible de $B_{p,q}^{s}$.
- $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{2\alpha}(\text{Lin}) = B^{\alpha}_{2,\infty} \subsetneq \mathbf{C}^{\alpha}$ par morceaux $\subsetneq \mathcal{A}^{2\alpha}(\text{NonLin}) = \mathcal{W}B^{\alpha}_{p,p}$ avec $p = 2/(2\alpha + 1)$.
- Estimation par seuillage dans une base d'ondelettes pour $f \ \mathbf{C}^{\alpha}$ par morceaux :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B_{2/(\beta+1),2/(\beta+1)}^{\beta/2}$ avec $\mathcal{W}B_{p,q}^{s}$ version faible de $B_{p,q}^{s}$.
- $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{2\alpha}(\text{Lin}) = B^{\alpha}_{2,\infty} \subsetneq \mathbf{C}^{\alpha}$ par morceaux $\subsetneq \mathcal{A}^{2\alpha}(\text{NonLin}) = \mathcal{W}B^{\alpha}_{p,p}$ avec $p = 2/(2\alpha + 1)$.
- Estimation par seuillage dans une base d'ondelettes pour $f \ \mathbf{C}^{\alpha}$ par morceaux :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

Disparition du facteur $\log N$ si $f \ \mathbf{C}^{\alpha}$ et utilisation de \mathcal{M} linéaire.

- Maxisets bien étudiés dans ce cadre (*C*, *DV*, *K*, *P*, *Autin*, *Rivoirard*).
 \$\mathcal{A}^{\mathcal{B}}(Lin) = B_{2,\infty}^{\beta/2}\$.\$\$\$\$\$\$\$\$\$\$\$\$\$\$
- $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{2\alpha}(\text{Lin}) = B^{\alpha}_{2,\infty} \subsetneq \mathbf{C}^{\alpha}$ par morceaux $\subsetneq \mathcal{A}^{2\alpha}(\text{NonLin}) = \mathcal{W}B^{\alpha}_{p,p}$ avec $p = 2/(2\alpha + 1)$.
- Estimation par seuillage dans une base d'ondelettes pour $f \ \mathbf{C}^{\alpha}$ par morceaux :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{2\alpha}{2\alpha+1}}$$

Disparition du facteur log N si f C^{\alpha} et utilisation de M linéaire.
Clé : approximation

$$\min_{\dim(m) \le M} \|f - P_m f\|^2 \le CM^{-2\alpha}$$
$$\|f - f_M\|^2 \le CM^{-2\alpha}$$

Base d'ondelettes 2D séparables

Base d'ondelettes 2D séparables

• La famille $\begin{cases}
\phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, & \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\
&, & \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2)
\end{cases} \\
\text{est une base orthonormée de } L^2[0,1]^2.
\end{cases}$

Base d'ondelettes 2D séparables

La famille $\begin{cases}
\phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, & \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\
&, & \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2)
\end{cases} \\
\text{est une base orthonormée de } L^2[0,1]^2.
\end{cases}$

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

Pour f C^α - C^α (C^α en dehors de contours C^α) (Korostelev, Tsybakov) : vitesse minimax (¹/_N)^{α/α+1} (β = α).
 A^β(Lin) = B^β_{2.∞}.

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

• $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta}_{2/(2\beta+1),2/(2\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta}_{2/(2\beta+1),2/(2\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.
- $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{Lin}) = B_{2,\infty}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{NonLin}) = \mathcal{W}B_{p,p}^{\alpha} \text{ avec } p = 2/(2\alpha + 1).$

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

• $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta}_{2/(2\beta+1),2/(2\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.

•
$$\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{Lin}) = B_{2,\infty}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{NonLin}) = \mathcal{W}B_{p,p}^{\alpha} \text{ avec } p = 2/(2\alpha + 1).$$

Pour
$$\alpha > 1$$
, $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \not\subset \mathcal{A}^{\alpha}(\text{NonLin})$.
Fonctions C^{α} et ondelettes 2D

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

• $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta}_{2/(2\beta+1),2/(2\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.

•
$$\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{Lin}) = B^{\alpha}_{2,\infty} \subsetneq \mathcal{A}^{\alpha}(\operatorname{NonLin}) = \mathcal{W}B^{\alpha}_{p,p}$$
 avec $p = 2/(2\alpha + 1)$.

• Pour
$$\alpha > 1$$
, $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \not\subset \mathcal{A}^{\alpha}(\text{NonLin})$.

■ Pour
$$\alpha > 1$$
, $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \subset \mathcal{A}^{1}(\text{NonLin})$.

Fonctions C^{α} et ondelettes 2D

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

• $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta}_{2/(2\beta+1),2/(2\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.

•
$$\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{Lin}) = B^{\alpha}_{2,\infty} \subsetneq \mathcal{A}^{\alpha}(\operatorname{NonLin}) = \mathcal{W}B^{\alpha}_{p,p}$$
 avec $p = 2/(2\alpha + 1)$.

■ Pour
$$\alpha > 1$$
, $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \not\subset \mathcal{A}^{\alpha}(\text{NonLin})$.

- Pour $\alpha > 1$, $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \subset \mathcal{A}^{1}(\text{NonLin})$.
- Avec M ondelettes : $||f f_M||^2 \le C M^{-1}$.

Fonctions C^{α} et ondelettes 2D

Pour $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha} \ (\mathbf{C}^{\alpha} \text{ en dehors de contours } \mathbf{C}^{\alpha}) \ (Korostelev, Tsybakov) : vitesse minimax <math>(\frac{1}{N})^{\frac{\alpha}{\alpha+1}} \ (\boldsymbol{\beta} = \boldsymbol{\alpha}).$

- $\mathcal{A}^{\beta}(\text{NonLin}) = \mathcal{W}B^{\beta}_{2/(2\beta+1),2/(2\beta+1)}$ avec $\mathcal{W}B^{s}_{p,q}$ version faible de $B^{s}_{p,q}$.
- $\mathbf{C}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{Lin}) = B_{2,\infty}^{\alpha} \subsetneq \mathcal{A}^{\alpha}(\operatorname{NonLin}) = \mathcal{W}B_{p,p}^{\alpha} \text{ avec } p = 2/(2\alpha + 1).$
- Pour $\alpha > 1$, $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \not\subset \mathcal{A}^{\alpha}(\text{NonLin})$.
- Pour $\alpha > 1$, $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \subset \mathcal{A}^{1}(\text{NonLin})$.
- Avec M ondelettes : $||f f_M||^2 \le C M^{-1}$.
- Sesoin de $||f f_M||^2 \le C M^{-\alpha}$ pour le risque minimax.

• Approximation de $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$:

• Approximation de $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$:

Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$.

• Approximation de $f \ \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$:

 M^{-1}

- Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$.
- Approximation d'ordre élevé avec M "éléments" adaptés : $\|f - f_M\|^2 \le C M^{-\alpha}$.

• Approximation de $f \mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$:

 M^{-1}

- Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$.
- Approximation d'ordre élevé avec M "éléments" adaptés : $\|f - f_M\|^2 \le C M^{-\alpha}$.
- Pas de bases et optimisation difficile.

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$.

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$.

• Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

 $||f - f_M||^2 \le C (\log M)^3 M^{-2}$ si $\alpha \ge 2$.

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$.

Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

 $||f - f_M||^2 \le C (\log M)^3 M^{-2}$ si $\alpha \ge 2$.

• Quasi optimal pour $\alpha = 2$.

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$.

• Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

$$||f - f_M||^2 \le C (\log M)^3 M^{-2}$$
 si $\alpha \ge 2$.

- Quasi optimal pour $\alpha = 2$.
- En pratique, estimation dans l'espace des coefficients.

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$.

• Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

 $||f - f_M||^2 \le C (\log M)^3 M^{-2}$ si $\alpha \ge 2$.

- Quasi optimal pour $\alpha = 2$.
- En pratique, estimation dans l'espace des coefficients.
- Discrétisation complexe et difficultés pour obtenir des bases orthogonales ou des bases de Riesz.

9 Image $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ simple

Image $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ simple par morceaux.

- **J** Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.

- **J** Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- \checkmark Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.

- $Image \mathbf{C}^{\alpha} \mathbf{C}^{\alpha} \text{ simple par morceaux.}$
- ${}_{\mbox{\scriptsize D}}$ Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
 - une segmentation dyadique et
 - une géométrie dans chaque carré.

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- ${}_{\bullet}$ Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
 - une segmentation dyadique et
 - une géométrie dans chaque carré.
- **Solution** Théorème : Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base,

 $||f - f_M||^2 \le C(\log M) M^{-\alpha} \quad .$

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- ${}_{\bullet}$ Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
 - une segmentation dyadique et
 - une géométrie dans chaque carré.
- **Solution** Théorème : Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base,

 $||f - f_M||^2 \le C(\log M) M^{-\alpha} \quad .$

Discrétisation de la géométrie donne une famille de bases avec beaucoup de vecteurs communs et un algorithme de recherche de meilleure base.

m sous-espace engendrées par des vecteurs d'une même base de bandelettes prise parmi les bases précédentes,

$$F_S = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|Y - P_m Y\|^2 + \lambda \log N \frac{\dim(m)}{N}$$

m sous-espace engendrées par des vecteurs d'une même base de bandelettes prise parmi les bases précédentes,

$$F_S = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|Y - P_m Y\|^2 + \lambda \log N \frac{\dim(m)}{N}$$

- Minimisation à 2 étages :
 - à base fixée, seuillage à $\sqrt{\lambda \frac{\log N}{N}}$ (facile),
 - recherche de meilleure base (difficile).

m sous-espace engendrées par des vecteurs d'une même base de bandelettes prise parmi les bases précédentes,

$$F_S = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|Y - P_m Y\|^2 + \lambda \log N \frac{\operatorname{dim}(m)}{N}$$

- Minimisation à 2 étages :
 - à base fixée, seuillage à $\sqrt{\lambda \frac{\log N}{N}}$ (facile),
 - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : utilisation de l'algorithme de meilleure base (*Coifman, Wickerhauser*) (CART).

m sous-espace engendrées par des vecteurs d'une même base de bandelettes prise parmi les bases précédentes,

$$F_S = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|Y - P_m Y\|^2 + \lambda \log N \frac{\operatorname{dim}(m)}{N}$$

- Minimisation à 2 étages :
 - à base fixée, seuillage à $\sqrt{\lambda \frac{\log N}{N}}$ (facile),
 - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : utilisation de l'algorithme de meilleure base (*Coifman, Wickerhauser*) (CART).
- Exploration exhaustive des géométries dans chaque carré.

m sous-espace engendrées par des vecteurs d'une même base de bandelettes prise parmi les bases précédentes,

$$F_S = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|Y - P_m Y\|^2 + \lambda \log N \frac{\operatorname{dim}(m)}{N}$$

- Minimisation à 2 étages :
 - à base fixée, seuillage à $\sqrt{\lambda \frac{\log N}{N}}$ (facile),
 - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : utilisation de l'algorithme de meilleure base (*Coifman, Wickerhauser*) (CART).
- Exploration exhaustive des géométries dans chaque carré.
- Algorithme polynomial permettant d'atteindre le risque quasi optimal :

$$E(\|f - F_S\|^2) \le C\left(\frac{\log N}{N}\right)^{\frac{\alpha}{\alpha+1}}$$

Bruitée (20,19 dB)

Bandelettes $(30,29 \, dB)$

Ondelettes $(28, 21 \, dB)$

Bruitée (20,19 dB)

Bandelettes $(30, 29 \, \mathrm{dB})$

Ondelettes $(28, 21 \, dB)$

Bruitée

Bandelettes

Ondelettes

Bruitée (20,19 dB)

Bandelettes $(27,\!68\,\mathrm{dB})$

Ondelettes $(25,79 \, dB)$

Bruitée

Bandelettes

Ondelettes

Conclusion

Conclusion

Pour la sélection de modèles, maxiset = espace d'approximation.

Conclusion

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : une représentation adaptée à la géométrie des images $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}.$

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : une représentation adaptée à la géométrie des images $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}.$
- Passage au modèle d'échantillonnage se fait bien.

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : une représentation adaptée à la géométrie des images $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}.$
- Passage au modèle d'échantillonnage se fait bien.
- Problèmes ouverts :

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : une représentation adaptée à la géométrie des images $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}.$
- Passage au modèle d'échantillonnage se fait bien.
- Problèmes ouverts :
 - Caractérisation *fonctionnelle* du maxiset de l'estimateur en bandelettes?

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : une représentation adaptée à la géométrie des images $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}.$
- Passage au modèle d'échantillonnage se fait bien.
- Problèmes ouverts :
 - Caractérisation *fonctionnelle* du maxiset de l'estimateur en bandelettes ?
 - Maxiset pour des pénalisations différentes $(l^1,...)$

- Pour la sélection de modèles, maxiset = espace d'approximation.
- Importance d'avoir une représentation adaptée.
- Bandelettes : une représentation adaptée à la géométrie des images $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$.
- Passage au modèle d'échantillonnage se fait bien.
- Problèmes ouverts :
 - Caractérisation *fonctionnelle* du maxiset de l'estimateur en bandelettes ?
 - Maxiset pour des pénalisations différentes $(l^1,...)$
 - Quelle représentation pour quel problème ou quel problème pour quelle représentation ?